
A software maintenance methodology for small organizations:
Agile MANTEMA

Francisco J. Pino1,∗,†, Francisco Ruiz2, Félix Garcı́a2 and Mario Piattini2

1IDIS Research Group, Electronic and Telecommunications Engineering Faculty, University of Cauca,
Calle 5 #4-70 Popayán, Colombia

2ALARCOS Research Group, Information Systems and Technologies Department, UCLM–INDRA Research and
Development Institute, University of Castilla–La Mancha, Paseo de la Universidad, 4-13071 Ciudad Real, Spain

SUMMARY

Software maintenance is an important, indeed vital, activity for software companies. For many organiza-
tions, including small firms, it is also a business opportunity. In the quest to help companies of this type,
for whom strengthening their maintenance process is a chief concern, we present Agile MANTEMA.
This is a methodological proposal for software maintenance, one which focuses on small companies.
The methodology defines an agile maintenance strategy, setting out in detail what is to be carried out,
when, how and by whom; that is to say, it seeks to give a detailed guide for the implementation of the
maintenance process in these kinds of companies. Agile MANTEMA also establishes a set of elements,
such as types of maintenance, service levels and capability levels, which aim to: (i) handle the complexity
that is inherent to the maintenance process and (ii) allow a small company to define its own maintenance
process, taking into account its particular characteristics and needs. In an effort to improve their mainte-
nance process, two small firms conducted an improvement project in which Agile MANTEMA was used.
The experiences reported by these companies tell us that this methodology offers a strategy that can be
useful, practical and suitable for small companies as they tackle software maintenance. Copyright q 2011
John Wiley & Sons, Ltd.

Received 21 January 2010; Revised 25 February 2011; Accepted 8 March 2011

KEY WORDS: software maintenance; MANTEMA methodology; small software organizations; scrum;
COMPETISOFT; experience report

1. INTRODUCTION

There are studies [1–5] that point to software maintenance as being the most costly part of the
software life cycle. They also find that the percentage of resources needed for maintenance increases
proportionately as more software is produced. Furthermore, according to Singer [6], 61% of the
professional life of programmers is dedicated to maintenance and only 39% to new developments,
a statement that is still valid today. According to the exhaustive longitudinal study on software
development and maintenance discussed in [7], the maintenance work done to improve systems in
operation varies from between 53 and 73%. In [8], the specific case of the Latin American software
scene is analysed. This shows that the higher the proportion between the software maintenance
contracts and the total company sales volume, the lower the number of new customers. The inverse
case also appears, i.e., the smaller the proportion between maintenance contracts and total sales

∗Correspondence to: Francisco J. Pino, IDIS Research Group, Electronic and Telecommunications Engineering
Faculty, University of Cauca, Calle 5 #4-70 Popayán, Colombia.

†E-mail: fjpino@unicauca.edu.co

Copyright q 2011 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
Published online 23 May 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.541

876

F. J. PINO ET AL.

volume, the greater the quantity of new clients in the company’s books. These are some of the
elements which bring out just how important and indeed, how critical, software maintenance is
for the companies that make up the software industry. Many software organizations do not have
processes defined for their software maintenance activities [9], however. At present there is still
a lack of: (i) process management in software maintenance (according to Van Bon [10]) and
(ii) maintenance process models (according to Kajko-Mattsson [3]).

At the same time, it is a well-known fact that the software industry is made of mostly small
organizations (firms with fewer than 50 employees). The chaotic model of software development
in numerous organizations of this kind [11], along with market pressures, means that it is quite
normal for these companies to invest a great deal of effort in maintenance activities for liberated
software, with insufficient quality assurance. It is also the case that some of these organizations
want to take advantage of software maintenance as a business opportunity, by specializing in
maintenance of software products developed by other organizations, i.e., by offering an external
maintenance service (outsourcing).

The state of affairs outlined in the paragraphs above leads us to affirm that it is important to
offer small organizations with methods and guides which will allow them to carry out and manage
software maintenance activities appropriately. A proposal of this type is needed because: (i) software
development methods are not suitable for driving activities related to software maintenance [12],
(ii) some of the proposals focusing on software maintenance are heavyweight approaches and
are not appropriate for small organizations (such proposals include the Model to improve the
maintenance of software [13], SMmm [9] or MANTEMA [14, 15] among others) and (iii) other
proposals, such as the corrective maintenance maturity model—CM3 [3], could be used by these
kinds of organizations, but are only for a particular type of software maintenance. Furthermore,
from the demands expressed by several small companies participating in the COMPETISOFT
Latin-American project [16], there arises the need for a proposal which would focus on the
overall software maintenance and which would be tailored to the characteristics of this category of
organizations. This proposal would have to take into account the software maintenance strategies
described by existing maintenance methodologies. These must be adapted to make them lighter
(or agile), so that they can be useful and practical for small organizations.

Bearing in mind the scenario described above, this paper presents Agile MANTEMA, a method-
ological proposal for software maintenance which focuses on small organizations. It is based on
making the process elements described by MANTEMA lighter and on the incorporation of agile
project management by using the Scrum method. This proposal defines a maintenance strategy that
sets out in detail what should be carried out, when, how and by whom. That is to say, it seeks to
guide the software maintenance process for these kinds of organizations, step-by-step. The paper
also describes our experience of the application of the proposed maintenance methodology in two
small software companies. These companies used Agile MANTEMA to improve their software
maintenance processes. The initial results obtained from the experience reports lead us to observe
that this methodology can be useful, practical and suitable for supporting software maintenance
in these types of organizations.

The remainder of this paper is organized as follows: Section 2 describes the background,
the related works and the research method of Agile MANTEMA. An overview of the elements
described by this maintenance methodology is given in Section 3. Section 4 provides an explanation
of the maintenance process proposed by Agile MANTEMA and in Section 5 there is a description
of the application of this methodology in two small companies. Finally, we present the conclusions
and the future work.

2. BACKGROUND

Agile MANTEMA has been developed in the context of the COMPETISOFT project [16]. This
project was funded by the ‘Programa Iberoamericano de Ciencia y Tecnologı́a para el Desarrollo’,
CYTED (Ibero-American Science and Technology Development Programme), which involved

852

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

1 national body for standardization and certification, more than 10 small software companies
and 27 research groups from 13 countries in Latin America [17]. The software process improve-
ment strategy proposed by this project pursues an increase in the level of competitiveness of
Latin-American small software organizations. Based on the expectations and requirements from
the companies and researchers, COMPETISOFT considers software maintenance to be a highly
important activity that should be tackled separately from software development. This is because
the nature and characteristics of each are very different; many techniques, tools, model processes,
etc., from development are not directly applicable to maintenance [12]. Indeed, many small orga-
nizations have to develop pure software maintenance projects, which makes it very important for
them to apply specific maintenance methodologies. In this regard, the COMPETISOFT approach
has developed a software maintenance methodology which adapts the MANTEMA methodology
[14] and Scrum method [18] to the special characteristics of small organizations. This methodology
is Agile MANTEMA, which is created from a speeding up of MANTEMA by means of project
agile management, as proposed by Scrum.

MANTEMA was developed with medium and large maintenance projects and services in mind,
especially outsourced ones, as, for example those to do with banks or public administration. That
is why one of Mantema’s major characteristics is that it follows a maintenance service that is based
on the ISO 12207:2002 standard [19], with a very elaborate definition. This definition contains:
a flow of activities and tasks to be performed, a model of roles and participating organizations,
inputs and outputs to and from the activities and a list of techniques recommended for each activity,
along with a review of the types of maintenance. All the above components were derived from
experience in medium- and large-scale projects. That being so, in the study presented in [14], a
clear difference has been established between the workflow which is to take place in the urgent
corrective maintenance (non-plannable) and the remaining kinds of maintenance (the plannables).
An extensive description of the development and validation of this methodology is described in
[12], which shows that the maintenance strategy of MANTEMA is appropriate and that it can
bring benefits to the companies using it.

On the other hand, agile methods, with their advocacy of self-empowered teams and shared
ownership, are associated more with the management style of small organizations [20]. This is
because this type of company considers that agile practices can be applied in their software process.
That is due largely to the small initial investment required and because those practices allow
them to take advantage of competitiveness in their personnel [21]. As [22] points out, some agile
methods that focus on small teams are: Agile modelling [23], Extreme programming [24], Pragmatic
programming [25] and Scrum [18]. Of all these methods, however, only the Scrum method provides
a framework for managing projects, whereas the others focus on describing practices, activities
and work product techniques to do with software development. That is to say, Scrum emphasizes
management values and practices, without including practices on technical issues. For this reason,
Scrum is a framework that can be integrated with various methods, processes and techniques
[26]. This feature allows us to combine the framework for managing projects, as described by
Scrum, with technical processes of a specific knowledge area (for instance, MANTEMA, from the
software maintenance area) and thus offer them the possibility of more agile management. Bearing
in mind the aspects described previously, the incremental and iterative process proposed by Scrum
has been integrated and tailored to the MANTEMA software maintenance methodology, to create
Agile MANTEMA.

Table I presents a comparison between MANTEMA and Agile MANTEMA, to show a clear
distinction between these two methodologies.

We have put the term ‘agile’ into the name of this methodology, because the use of Scrum
allows the proposed methodology to tackle some important aspects. We can consider the following
advantages: (i) the maintainers are given a technical and managerial maintenance environment to
support their daily work, and are trusted to get the job done, (ii) there is guaranteed early and
continuous delivery of the maintained software to the customer, (iii) frequent delivery of maintained
software takes place within a short timescale, (iv) close work and communication occurs between
maintainers and users throughout the maintenance project and (v) reflection about the process

853

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Table I. Comparison between Agile MANTEMA and MANTEMA methodologies.

Agile MANTEMA MANTEMA

Number of roles 5 8
Number of activities 10 14
Number of tasks 27 46
Number of work products 3 11
Number of proposed metrics 1 11
Management style Agile and decentralized based on

Scrum
Heavier and centralize

Maintenance process Incremental and interactive, less
controlled, adaptive, cycles
numerous

Stiffer, more controlled, predictive,
cycles limited

Perspective on change Adaptability to changeable
modification requests

Some resistance to changeable
modification requests

Maintenance client/user Member of the maintenance team Involvement with the maintenance
team

Delivery of maintained
software

Early in the maintenance project Later on in the maintenance project

Documentation Low Heavier
Service levels Yes No
Process performance levels Yes No
Process capability levels Yes No

happens on an ongoing basis, along with continuous learning of the maintenance work. This refines
and improves the daily activity. These aspects are related to several principles described by the
agile manifesto [27].

2.1. Related work

We are not aware of any other attempts to provide an explicit and comprehensive software mainte-
nance methodology which focuses on small organizations. In [9] a software maintenance maturity
model is discussed, aiming to address the assessment and improvement of the software maintenance
function. The validation of this maturity model has shown that there is a negative perception of its
usefulness in small organizations, however, since it has too many practices for it to be used by this
type of a company. Business experiences of the implementation of extreme programming prac-
tices in real-software maintenance projects are presented in [28, 29]. An adoption of the extreme
programming practices for carrying out maintenance activities is discussed in [28]. The results of
introducing extreme programming in an evolutionary and maintenance software development envi-
ronment are presented in [29]. This study finds that many of the extreme programming practices
have to be modified if they are to work in maintenance environments. That is to say, these last two
studies focus on adapting the extreme programming practices and/or principles for the purpose
of carrying out practices of software maintenance. These proposals do not describe explicitly how
to manage and lead the activities and practices involved in the software maintenance, however.
Neither do they consider other activities and practices that are unique to, and fundamental for,
software maintenance.

A proposal that deals with software maintenance in great detail is the corrective maintenance
maturity model—CM3, which has been presented and discussed at length in [3, 30–35]. CM3 is a
process model for handling explicitly the maintenance category related to corrective maintenance.
This model consists of several processes (which perform a clearly defined task) collaborating
with each other. Each process has a well-defined structure, providing detailed guidance to the
organizations when building or improving their maintenance processes [31]. This model is a very
comprehensive approach for corrective maintenance, but it was not developed with the particular
characteristics of small organizations in mind. That could make it difficult to apply in these types
of organizations. Furthermore, this model focuses only on a specific maintenance type; we believe
that small organizations need a proposal that allows them to address all the maintenance types

854

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

suitably. In this sense, it is important to highlight that, in the real world, clients’ maintenance
requests are not filtered previously by maintenance type before they reach us.

It should be mentioned that there are several studies related to the software process in small orga-
nizations (such as MESOPyME [36], IMPACT [37], ASPE-MSC [38], MoproSoft [39], MPS.BR
[40], ADEPT [41], RAPID [42], PROCESSUS [43], among others). None of these proposes the
definition of a maintenance methodology or process for small companies, however. Some of the
studies do propose process reference models that present a set of processes which small soft-
ware organizations could use to derive significant benefit during the software development and
maintenance of a software product. These are, for instance:

• MoProSoft proposes 6 processes (based on ISO 12207, CMM, ISO 9001): Business manage-
ment, Process management, Project management, Resource management, Administration of
specific projects and Software development and maintenance.

• MPS.BR proposes 23 processes (based on ISO 12207 and CMMI): Organizational innova-
tion and deployment, Causal analysis and resolution, Organizational process performance,
Quantitative project management, Risk management, Decision analysis and resolution,
Requirement development, Technical solution, Validation, Verification, Software integration,
Software installation, Product release, Training, Process establishment, Process assessment
and improvement, a Tailoring process for project management, Configuration manage-
ment, Quality assurance, Acquisition, Measurement, Project management and Requirement
management.

• ADEPT proposes 12 processes (based on CMMI): Requirement management, Configura-
tion management, Project planning, Project monitoring & control, Measurement & analysis,
Process & product quality assurance, Risk management, Technical solution, Verification,
Validation, Requirement development, Product integration.

• RAPID proposes 8 processes (based on ISO 15504:1998): Requirement elicitation, Software
development, Configuration management, Quality assurance, Project management, Problem
resolution, Risk management, Process establishment.

• PROCESSUS proposes 6 processes (based on CMM and ISO 9001): Customer relation-
ship management, Project management, Software engineering, Supporting activities, Process
management and Process automation.

Of all these process reference models for small software organizations, only MoProSoft makes
mention of ‘maintenance’, but the activities described in this process are related more to software
development than to software maintenance. It should also be pointed out that none of these reference
models provides a detailed approach for supporting the implementation of software maintenance.

The contribution of the proposal described in this paper is to present Agile MANTEMA, a
software maintenance methodology that is explicitly for small software organizations. This method-
ology takes into account: (i) the specific software maintenance activities and the different mainte-
nance types (since it is based on MANTEMA), along with (ii) the features of the small software
organization. That being so, we have analysed and selected the activities from MANTEMA that
are suitable for these types of organizations. Moreover, in Agile MANTEMA the Scrum method
has been integrated, aiming to give detailed guidelines for supporting the management and perfor-
mance of these software maintenance activities. As discussed previously, our reason for doing so
is that this method provides support for project management and it is suitable for small teams. The
purpose is to provide small software organizations with a strategy that can be useful and practical
for the execution of the software maintenance process. Moreover, if a small organization employs
this strategy it can: (i) manage the complexity of the maintenance process and (ii) define its own
process of maintenance, taking into account its particular characteristics and needs.

2.2. Research method

We have used the action-research method to define, refine and apply the Agile MANTEMA
methodology. According to McKay and Marshall [44] and Chiasson et al. [45], action-research
involves a research cycle and a problem-solving cycle, in which the knowledge is applied and

855

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Diagnosis Action

Reflection

Diagnosis Action

Reflection

[Another cycle]

Research
cycle

[No more cycles]

Problem solving
cycle

[It
 is

 a
 R

es
ea

rc
h

cy
cl

e]
[It

 is
 a

 P
ro

bl
em

 s
ol

vi
ng

 c
yc

le
]

Agile_MANTEMA

Improved
maintenance processes

in small companies

Processes/methods
researchers

Advisers

(Researchers)

Small organizations
and IT professionals

(Critical reference group)

Application of
Agile_MANTEMA

by using
Participative

variant

Experience
reports

<outcome>

<outcome>

Software
maintenance

for small
organizations

(Object of research)

Address

Latin American
Small organizations

(Stakeholders)

Research
results

Results from
industrial application

Action

ReflectionReflection

[Another cycle]

[No more cycles]

]
]

<outcome>

(

Address

Figure 1. Research strategy used to develop and apply Agile MANTEMA.

discovered interactively between activities with different goals and outcomes. Each of these cycles
includes at least the following activities: problem diagnosis, action intervention, and reflective
learning [46]. Bearing in mind these aspects, Figure 1 shows a high-level view of the research
strategy that we followed. In our case, we began the research cycles which were carried out with
the goal of developing an initial version of the Agile MANTEMA. This could be applied by the
small organizations participating in the COMPETISOFT project, by means of problem-solving
cycles. The information and knowledge acquired from the problem-solving cycle was registered
in the respective experience reports. This knowledge was used in the following research cycles to
refine and improve the Agile MANTEMA methodology, thereby creating a new version of this.

Figure 1 also shows the elements that should be considered in action-research, according to
Wadsworth [47]. These elements are: (i) the researched object, (ii) researchers, (iii) critical reference
group and (iv) stakeholders of the research. By using the action-research method, the participants
involved in the development of Agile MANTEMA were divided into two groups: the first was
made of researchers from various universities; the second is called the critical reference group, and
it included IT professionals from small software organizations. The researcher group was divided
into two: (i) processes/methods researchers, who were responsible for developing the components
of Agile MANTEMA and (ii) advisers, who were the field researchers responsible for carrying
out the application of this maintenance methodology in the organizations of the critical reference
group. As mentioned previously, the application of action-research is iterative and has allowed us to
have continual feedback between the researchers and the companies involved, hence we can polish
up the components of the proposed maintenance methodology. With regard to the execution of
the action intervention activity of the problem-solving cycle from action-research, the researchers
applied the participative variant [48]. That is to say, the application of Agile MANTEMA was
participative, because the critical reference group put this methodology into practice with support
from an adviser. That group shared its experiences, effects and results of the application with the
researchers by means of experience reports (see Figure 1).

3. OVERVIEW OF AGILE MANTEMA

Agile MANTEMA offers small organizations a methodological guide for conducting the software
maintenance process. This methodology describes:

• A process, which is a detailed guide for managing and carrying out software maintenance
step-by-step. This process describes activities that support the different types of maintenance
(urgent corrective, non-urgent corrective, perfective, preventive and adaptive).

856

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

• Service levels, by which the type of maintenance offered at each service level is established,
along with the basic auxiliary processes which support this type of maintenance. A service
level defines the scope (maintenance types and auxiliary processes) of the maintenance service.
The auxiliary processes describe support and management practices which can strengthen the
performance of the maintenance process.

• Process performance levels, through which basic auxiliary processes of support and manage-
ment are grouped, in an attempt to offer an orderly and scalable way to strengthen the carrying
out of the maintenance process.

• Process capability levels, by means of which the process capability involved in the software
maintenance is reinforced.

The overall structure of the process for software maintenance, as set out in Agile MANTEMA,
is displayed in Figure 2. The general activities defined by this process are: definition of the
maintenance process, record and analysis of modifications requests, execution of the interven-
tion (these last two activities are cyclical) and migration and retirement of the software. This
general structure is based on the maintenance process of MANTEMA and on the final descrip-
tion of the maintenance process defined in the ISO 12207:2008 standard [49]. Unlike those
approaches, however, this macrostructure proposes and includes the carrying out of the software
maintenance in an iterative and incremental way, by means of the definition of the cycle, made
of the following activities: Record and analysis of modification requests and Execution of the
intervention.

This maintenance methodology is complemented by the following elements which have been
analysed and adapted so that they may be integrated into Agile MANTEMA: (i) Service level,
extracted from Métrica V3 [50], (ii) Process performance, based on the ISO/IEC 15504-5 standard
[51] and (iii) Process capability, based on the ISO/IEC 15504-2 [52] standard. The concepts of
service level and process performance are integrated into Agile MANTEMA and are related within
it in a two-dimensional way. Thus, on one dimension the service levels are found and on the other
the performance level is seen (see Figure 3). In Section 3.3 there is a description of how these two
concepts are related to process capability.

The purpose of offering this two-dimensional representation is that any small organization can
handle the complexity inherent in the software maintenance process. It does so through adaptation
and implementation of this process, in line with its own organizational characteristics and business
goals. The intention is for a small company to be able to choose the service level it wishes to
offer in a particular project or service, along with the performance level and the capability level
that it wants to implement in its own maintenance process, according to its particular needs and
infrastructure.

Definition of the
maintenance process

Record and analysis
of the requests

Execution of
the intervention

Migration and retirement
of the software

Figure 2. General structure of the maintenance process described by Agile MANTEMA.

Performance
levels

Three (PL3)
Two (PL2)
One (PL1)

Basic Intermediate Advanced
slevelecivreS

Figure 3. Two-dimensional representation of Agile MANTEMA.

857

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Table II. Service levels of Agile MANTEMA.

Basic Intermediate Advanced

Maintenance Types
supported by the
Agile MANTEMA process

• Urgent corrective • Urgent corrective • Urgent corrective
• Non-urgent corrective • Non-urgent corrective
• Perfective • Perfective

• Preventive
• Adaptive

Basic interfaces with other
auxiliary support and
management processes

OPE.2 Customer support
(PL1)
SUP.9 Problem
resolution management
(PL1)

OPE.2 Customer support
(PL1)
SUP.9 Problem
resolution management
(PL1)
SUP.8 Configuration
Management (PL2)
SUP.1 Quality Assurance
(PL2)

OPE.2 Customer support
(PL1)
SUP.9 Problem
resolution management
(PL1)
SUP.8 Configuration
Management (PL2)
SUP.1 Quality Assurance
(PL2)
SUP.10 Change request
Management (PL3)
MAN.3 Project
management (PL3)

3.1. Maintenance types and service levels

The types of maintenance in Agile MANTEMA are the five kinds that are identified in MANTEMA
[12, 53], since this is not a factor that is affected by the search for greater agility. These maintenance
types are: (i) Urgent corrective: a detected error prevents normal system operation and the solution
time is critical, (ii) Non-urgent corrective: a detected error does not block the normal operation of
the system and the solution time is not critical, (iii) Perfective: when new functionalities are added to
the system, (iv) Preventive: consists of the software modification to improve its maintainability and
quality properties and (v) Adaptive: when the system will change its execution environment. The
types of maintenance are organized into categories of ‘plannable’ and ‘non-plannable’. The urgent
corrective maintenance is non-plannable and is similar to the emergency maintenance proposed
in [34], while the maintenance types which are non-urgent corrective, perfective, adaptive and
preventative are plannable. For instance, an operational block of the software product that prevents
it working properly should be addressed as non-plannable maintenance, whereas a new require-
ment that comes from the change in the laws and regulations should be dealt with as plannable
maintenance. The division of the maintenance into these categories allows better management. It
also ensures optimization of the ordered group of modification requests, thereby offering a criterion
for classifying and prioritizing the requests towards the particular role in charge of carrying out
that task.

Agile MANTEMA establishes three service levels (basic, intermediate and advanced), identi-
fying the types of maintenance which are given at each level (see Table II). In addition, it also
defines the interfaces which each service level has with the other auxiliary support and manage-
ment processes. The description of each process can be obtained from the ISO/IEC 15504-5 [51]
standard.

The implementation of the activities described by the auxiliary processes (based on the interfaces
of the service levels described in Table II), makes it possible to carry out base practices which
reinforce the maintenance process defined by Agile MANTEMA. The auxiliary processes are made
of base practices and work products, which are software engineering activities that directly guide
the purpose of each particular process. These activities contribute to the generation of the process
outputs, which are useful for software maintenance. To incorporate the practices described in the

858

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

Table III. Support for the auxiliary processes on the basis of the works analysed.

Selection supported by

Auxiliary process [51] [9] [54] [51]
OPE.2 Customer support X
SUP.9 Problem resolution management X X X
SUP.8 Configuration management X X X
SUP.1 Quality assurance X X X
SUP.10 Change request management X X X X
MAN.3 Project management X X

auxiliary processes in the maintenance process, we have used and adapted the concept of interfaces
presented in Métrica V3 [50]. Section 4.3 shows an example of an interface.

For the choice of auxiliary processes described in Table II we have, on the other hand, borne
in mind the following pieces of work: (i) the description of the maintenance process presented in
the ISO/IEC 15504-5 standard [51], (ii) the process areas and KPAs of the Software maintenance
maturity model presented in [9], (iii) the processes that are considered critical to the implementation
of a process improvement project in small software organizations and are therefore of priority, as
presented in [54] and (iv) the related processes for process attributes of level two that are discussed in
the standard ISO/IEC 15504-5 [51] (since this is the level that a small organization wishes to reach
initially [55]). This work has been analysed, in an attempt to establish what the most appropriate
auxiliary support and management processes are, for software maintenance, as well as for small
organizations. Table III shows each of the auxiliary processes defined for Agile MANTEMA, along
with the relationship between each of these processes and the publications supporting them.

3.2. Performance levels

The performance levels establish what auxiliary processes should be defined and put into practice
to strengthen the maintenance process by means of support and management practices. In this
sense, Agile MANTEMA defines three performance levels:

• Performance level one (PL1), which establishes that the auxiliary processes to be implemented
are OPE.2 (Customer support) and SUP.9 (Problem resolution management).

• Performance level two (PL2), which establishes that the auxiliary processes to be implemented
are those corresponding to level 1 plus SUP.8 (ConfigurationManagement) and SUP.1 (Quality
Assurance).

• Performance level three (PL3), which establishes that the auxiliary processes to be imple-
mented are all indicated on two previous levels, plus SUP.10 (Change request Management)
and MAN.3 (Project management).

Taking into account Figure 3 and Table II, we should remark at this point that Agile MANTEMA
establishes the following performance levels for each of the service levels:

• ‘Basic’ has just one performance level (PL1), which means that the activities described in (i)
the Agile MANTEMA maintenance process which support the type of maintenance defined
for this service level (Urgent corrective), and (ii) the related auxiliary processes (OPE.2 and
SUP.9) should be carried out.

• ‘Intermediate’ has two different performance levels (PL1 and PL2), which means that the
activities described in the following processes should be carried out; these are: (i) The
Agile MANTEMAmaintenance process which supports the maintenance types Urgent correc-
tive, Non-urgent corrective and Perfective, and (ii) The related auxiliary process. We bear in
mind that if only the OPE.2 and SUP.9 activities are performed, then the performance level
is PL1, whereas if the SUP.8 and SUP.1 processes are also carried out, the performance level
is PL2.

859

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Capability
level

Performance level

Service level

MP: Maintenance process of Agile_MANTEMA
MP*: Activities from MP that support maintenance:

Urgent corrective, Non-urgent corrective and Perfective
MP**: Activities from MP that support maintenance:

Urgent corrective

Figure 4. Three-dimensional representation of Agile MANTEMA.

• ‘Advanced’ has three different performance levels (PL1, PL2 and PL3), which means that the
activities described in the following processes should be carried out (i) the Agile MANTEMA
maintenance process and (ii) the auxiliary processes related with this service level. Taking the
auxiliary processes into account, this service level has (i) a performance level PL1, if only
the OPE.2 and SUP.9 processes are performed, (ii) PL2 performance level if the activities of
the SUP.8 and SUP.1 processes are also carried out and (iii) PL3 performance level if the
auxiliary processes SUP.10 and MAN.3 are also performed.

3.3. Capability levels

The concept of capability levels may be considered to be the third dimension of the representation
of Agile MANTEMA, so that on one dimension the service levels are found, while on another we
find the performance levels of the processes to do with maintenance. On the third dimension are
the capability levels of these processes (see Figure 4). This dimension is given to demonstrate that
another way of improving and strengthening software maintenance is by means of an increase in
the capability of the processes involved throughout the maintenance.

As can be observed in the above figure, both the maintenance process described by
Agile MANTEMA and the auxiliary processes may have capability levels 1 and 2. We have
limited ourselves to considering only up to level two of the measurement framework for process
capability, as described by ISO/IEC 15504-2 [51] and its three process attributes (from the nine
attributes given by this standard). We have done this because, according to [55], the vast majority
of small organizations try to achieve level 2 of capability when they start their first improvement
projects.

860

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

All the processes can be taken to capability level 2, but, as may be deduced from Figure 4,
we propose that the maintenance process (or activities which are explicit in each maintenance
type) described in Agile MANTEMA (MP or MP*, MP**), together with the auxiliary processes
associated with performance level 1 (OPE.2 and SUP.1), should be enhanced to reach only capability
level 1 initially. Nevertheless, all the processes associated with performance levels 2 and 3 can
be taken up to capability levels 1 and 2. The goal is for the small organization to establish,
in a scalable way, the software maintenance strategy proposed by Agile MANTEMA. Putting
Agile MANTEMA into practice in this scalable manner is achieved by limiting, initially, the
number of processes to be defined (performance level). A limit is also placed on the quantity of
practices that have to be taken into account for the definition of each of the processes. These
practices are directly related to the capability level which is to be reached.

The capability level of the processes described in Figure 4 is determined by following the
strategy offered by the ISO/IEC 15504-2 international standard [52]:

• Capability level 1 is characterized by its focus on the base practices of a specific process
that has been established and defined by a process reference model (for instance, ISO/IEC
15504-5). In this respect, reaching level 1 is demonstrated by fulfilling the base practices and
the work products described by the process which is being implemented.

• Capability level 2 is made of a set of process attributes that work together to provide a
major enhancement in the capability of performing a process. These attributes are PA 2.1
Performance management and PA 2.2 Work product management. This capability level is
reached by the fulfilling of the corresponding process attributes associated with this capability
level. The process attributes describe capability characteristics of a process and are applicable
to all processes. Process attributes are made of management practices and generic work
products. A detailed description of the management practices and generic work products of
the attributes PA 2.1 and PA2.2 is presented in the standard ISO/IEC 15504, Part 2 [52] and
Part 5 [51].

Taking into account the three dimensions present in Agile MANTEMA (service level, perfor-
mance level and capability level), there may be different combinations for the software maintenance
implementation on the part of a small enterprise. There are 9 combinations, which are related to
each of the boxes set out in Figure 4. For example, we can have a maintenance process with an
intermediate service level, performance level 2 and capability level 1, which indicates that the
maintenance types that are carried out are urgent corrective, non-urgent and perfective. In addition
to this, the base practices described in the auxiliary processes: OPE.2 Customer support, SUP.9
Problem resolution management, SUP.8 Configuration management and SUP.1 Quality assurance
are largely implemented. For this maintenance process to reach capability level 2, these four
processes should fully incorporate the management practices and generic work products set forth
in the process attributes PA 2.1 Performance management and PA 2.2 Work product management.

The particular types of maintenance, the service levels, the performance level and the capability
level will be decided according to the needs and characteristics of each organization. We also bear
in mind the particular circumstances of each project or the specific maintenance service, always
respecting the structure established by Agile MANTEMA.

4. THE MAINTENANCE PROCESS

In this section, a general description of the maintenance process is given and, by way of example, a
specific description of an activity and an interface with an auxiliary process is presented. A complete
description of the Agile MANTEMA and its maintenance process can be found in [56].

4.1. Description

The maintenance process aims to establish a specific guide for carrying out the requested modi-
fications in a software product, setting out in detail what should be done, when, how and by

861

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

[It
 is

 a
n

ur
ge

nt

co
rr

ec
tiv

e
m

ai
nt

en
an

ce
]

[It
 is

 a
no

th
er

M
ai

nt
en

an
ce

ty
pe

]

Modification request cycle

Feedback from retrospection
of the Non-plannable SprintM

Feedback from retrospection
of the Plannable SprintM

Is software
retirement need ?

[N
o

m
or

e
 c

yc
le

s]

[A
no

th
er

 c
yc

le
]

[Yes]

[No]

Planning
the process

Attention
to requests

Executing and Monitoring
the Non-plannable SprintM

Executing and Monitoring
the Plannable SprintM

Plannable SprintM

Monitoring the SprintM
[A

no
th

er
ite

ra
tio

n]

[N
o

m
or

e
ite

ra
tio

ns
]

Monitoring the SprintM

Non-plannable SprintM

[A
no

th
er

ite
ra

tio
n]

[N
o

m
or

e
ite

ra
tio

ns
]

Completion
of Intervention

Retirement

Completion
of Service

Figure 5. Flow of activities for the maintenance process in Agile MANTEMA.

whom. Figure 5, which uses SPEM notation, displays the activities and workflow of the main-
tenance process defined by Agile MANTEMA. We can see that Agile MANTEMA establishes
the following activities for carrying out the software maintenance: Planning the process, Attention
to modification requests, Non-plannable SprintM, Plannable SprintM, Monitoring the SprintM,
Completion of the Intervention, Software Retirement and Completion of Service. Each of these
activities is described in greater detail by means of a breakdown into activities and tasks. Each
task specifies in explicit terms the inputs, outputs, staff member/s in charge, techniques which
may be used, along with the interfaces with the auxiliary processes that support each task.

At this point we give a very summarized description of the maintenance process defined by
Agile MANTEMA:

• It begins when the ‘Maintainer’ and the ‘Client’ begin to work together, i.e., they assign the
people responsible, together with the criteria and explanation of how the work is going to be
conducted. These tasks are grouped into the activity called Planning the process.

• When the above activity has concluded, the cycle to be followed by each ‘Modification
Request’ received is started. The first activity to be performed in this cycle is Attention to
modification request, by means of which a ‘Modification Request’ is formulated or received.
This then passes into the hands of the ‘Request Manager’, who will be responsible for assigning
the type and priority of the modification request. The group of requests, arranged in order,
is called the ‘Request Register’. From this register, a first group of requests, called ‘Request
Waiting List’, is selected. This group can enter two different types of Maintenance Sprint
(SprintM)‡: a short one for non-plannable requests and another longer one for the plannable
type. Within SprintM a series of meetings will be held, to obtain the state of progress and

‡SprintM: Basic maintenance cycle with a duration that is recommended according to the type of maintenance. For
urgent corrective from one to seven days, for the others from eight to fifteen days. In that time a modification
request is dealt with and resolved. (Definition created for software maintenance based on the definition of Sprint
in SCRUM.)

862

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

the possible problems that might occur in its execution. These meetings and tasks related to
the SprintM management are grouped in the Monitoring the SprintM activity. When the list
of requests chosen in a SprintM has been dealt with, the cycle is closed with the Completion
of intervention activity. This activity has the goal of validating and verifying the product on
the client’s part, going on to the production, register of documents and SprintM retrospective
meetings.

• To complete the maintenance process, when no more requests are going to be received because
the time allowed for the project/service has expired, a final activity, known as Completion of
service, is performed. This ends the activities of the ‘Maintainer’ in such a way as to create
no negative repercussions for the client organization. On occasions, the Retirement activity
may have to be conducted before performing this task, in order to apply the plan for software
retirement.

The activities of Planning the process, Retirement and Completion of Service take place just
once and do not hinder the agility of the process. It should also be said that there are the two types
of SprintM, each one having a repetitive set of activities. In line with the guidelines from Scrum,
a mechanism for incorporating changes exists, thanks to the fact that rapid feedback to the client
is provided, as well as a fast and regular delivery of attention to requests for modification.

The organizations and roles involved in the maintenance process are:

• Client: This is the organization which owns the software receiving the maintenance service.

◦ Product owner: Representing all those who have an interest in the final product. It is
responsible for the following: financing the project, return on the investment in it and
launching the project. As a general rule, the owner of the product formulates modification
requests of a perfective or adaptive type.

• User: The user of the software. They put forward corrective modification requests (urgent and
non-urgent), as well as perfective requests.

• Maintainer: They carry out the modification of the software.

◦ Request Manager: It is he or she who accepts or rejects the modification requests and who
decides on the type of maintenance that corresponds to each particular case. In the case
of perfective modification, they keep the owner of the product (the client) abreast of the
maintenance, so that its viability can be assessed. In any other type of modification request,
the request is put on the ‘Request Waiting List’ and it is classified as regards priority.

◦ (Person) Responsible for Maintenance: He or she prepares the maintenance process and
establishes the norms and procedures required for the application of the methodology. This
person is also in charge of carrying out the practices, values and rules of Scrum. He or
she is, moreover, a member of the maintenance team and works alongside the rest of its
components, coordinating the fixed meetings of that team and ensuring that any and every
possible obstacle is removed.

◦ Maintenance team: This is the group of people who implement the modification requests.
The team has the authority to reorganize and define the actions needed or to suggest the
removal of any hindrances.

This maintenance process proposed by Agile MANTEMA has been modelled with
SPEM 2.0 [57] using the EPF Composer editor [58] (see Figure 6). Employing this tool, the
activities, tasks, roles, work products and guidelines needed to carry out the software maintenance
by small companies are described and are made available on the WEB.

4.2. Example of an activity

By way of example, the sub-activities and tasks of the non-plannable SprintM activity are set out
in the following lines, giving details of the inputs, outputs, staff responsible and the techniques
in each task. The goal of non-plannable SprintM is to offer urgent attention to the modification

863

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Figure 6. Screen of the Spanish version of Agile MANTEMA implemented with EPF composer.

requests which block or interrupt the working of the product software. In other words, SprintM
is run when an urgent corrective maintenance is assumed. This activity is performed when the
error§ outlined in the request for modification seriously paralyses the normal working of the system
or of the organization, making correction of the error an immediate priority. The execution of
short non-plannable SprintMs of between one and seven days (depending on the type of error) is
recommended, with management meetings every day.

Figure 7 shows the activity diagram of the non-plannable SprintM and the relationships between
the tasks of this activity and the tasks of the Monitoring the SprintM activity. Both activities are
integrated, to guarantee the strategy of agile project management proposed by Scrum. Thus the
non-plannable SprintM activity is made of the following two sub-activities:

• The Sub-Activity SNP1. Error analysis. It is composed of one single task:

◦ Task SNP1.1. Investigate and Analyse Causes. The ‘Maintenance team’ analyses the ‘Modi-
fication request’, and checks out the problem with the help of the ‘User’ who made the
request; it reproduces the error. It also looks at different alternatives for the implementation
of the modification to correct the error and then a list of the software elements to be
corrected (models, routines, documents, etc.) is drawn up.

• Sub-Activity SNP2. Urgent corrective intervention. The activity is made of two tasks:

◦ Task SNP2.1. Performing corrective actions. The ‘Maintenance team’ performs the actions
needed to correct the problem detected. All the components of the software product
(routines, data bases etc.), that are affected by the intervention must be identified.

§Failure (problem or defect) in the software product, found in the executable code.

864

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

Non-planneable
SprintM

Request
Register

User

Monitoring
the SprintM

<<Input>>

Corrected
software product

<<Output>>

Plan execution
of SprintM

Update
modification requests

Manage problems

Investigate and
Analyze Causes

SprintM
daily

meeting

<<Output>>

[D
ay

s
re

m
ai

ni
ng

 in

cu
rr

en
t S

pr
in

tM
] [S

pr
in

tM

en
d]

Performing
corrective actions

Running
unitary tests

Maintenance
Team

Maintenance
Team

Software
Product

with error

Software elements
to be corrected

<<Output>>

Software elements
corrected

Test cases

SprintM
Review

<<Input>>
<<Input>>

<<Output>>

Urgent Request
Waiting List <<Input>>

<<Input>>

<<Input>>

Figure 7. Activities diagram of Non-plannable SprintM and its relationship with Monitoring the SprintM.

Table IV. Example of task description.

Interfaces with Service
Inputs Outputs Techniques Roles other processes level

Task SNP1.1
Investigate
and Analyse
Causes

• Software
product being
used, with
critical error
• Modification
Request

Set of
Software
elements to
be corrected

• Study of
Documentation
• Investigate
the Software
Product
• Observation
and interviews

• Maintenance
Team
• User

OPE.2
Customer
support

Basic

◦ Task SNP2.2. Running unitary tests. The ‘Maintenance team’ should check the proper
functioning of all the changes made. The tests conducted must be documented in the
‘Unitary Tests Carried Out’ document. This task does the job of checking on the correct
operation of the module on which the corrective actions have been carried out.

The tasks included in Agile MANTEMA are outlined by means of the corresponding input
products, output products, roles involved and techniques (which can be used to guide the task). In
addition, the relationship of each task with other processes and the service levels which that task
supports are also described (see Table IV).

In an urgent corrective maintenance (which involves a critical error), the priority is to have
the software product working as soon as possible. This does not allow tasks to be carried out
in a systematic and formal way. However, to address an error of this type, its causes need to be
investigated and analysed. This task is often performed, however, under so much pressure that
there is an ensuing loss of valuable information which might have been very useful for addressing
the present and future problems. One of our purposes in defining this task is that the maintenance
team: (i) acquires awareness when it is carried out, and (ii) stores the sensitive information about
the error and the problem. This can allow the organization to have a better way of managing and
resolving this and other maintenance types.

865

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Figure 8. Interface of the maintenance process with Quality Assurance.

4.3. Example of an interface with an auxiliary process

This section gives an example of the interface of the Quality Assurance process with which the
maintenance process is involved in the intermediate and advanced service levels (see Table II).
With this interface the person ‘Responsible for Maintenance’ carries out periodic check-ups on
the maintenance process, aiming to verify that the modification requests that have been made are
being put into operation properly.

To carry out the modification request, it may be necessary to check on some elements described
by the maintenance process:

• The content of the plan for regression testing.
• The running of the regression testing, according to the strategy laid out in the Quality Assur-
ance plan.

• The verifications and test cases that have been included in the test plan, which are related to
the changes produced by a modification request.

• The problems that have arisen and that have been detected during the running of the main-
tenance process, aiming to find out if some quality property of the product being maintained
could be affected.

In Figure 8 the tasks (interfaces) of Quality Assurance which support the maintenance process
are shown and a description of these is given in the following lines:

• Task QA1: Maintenance check. A strategy for Quality Assurance of the activities and work
products involved in the maintenance process should be developed. A periodic check of
the Request Register takes place, to make sure that it is kept up-to-date. Similarly, there is
a check to ensure that the user accepts or rejects the solution proposed in answer to the
modification request and that he/she gives their formal approval to the closure of the request.
It is also verified that products, processes and activities carried out during maintenance are
in accordance with those described by Agile MANTEMA.

• Task QA2: Check on the Existence of a Regression Testing Plan. A monitoring task takes place
to ensure that a regression testing plan has been set up, according to the criteria established
in the Quality Assurance plan. The goal is to determine what techniques are going to be
applied for the execution of the tests, what the acceptance criteria will be, how the verification
activities will be carried out as well as how the results will be issued. If changes are brought
into the execution of the regression testing, these must be approved by the person ‘Responsible
for maintenance’. A check takes place on the existence or not of a strategy for the management
of the test results.

866

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

• Task QA3: Check on the Performance of Regression Testing. A check is performed to see
whether the established regression testing, verifications and test cases have been carried out,
to determine whether the changes have been introduced properly. In doing this monitoring,
the strategy established for the management of the results of all these tests should be borne in
mind. Wherever there are additional test cases that have been brought in as a consequence of
the corrective measures taken to solve modification requests, the individual ‘Responsible for
maintenance’ will check to see that they have been sorted out correctly. In the same way, the
unresolved problems that have arisen will be reviewed, to assess to what extent the quality
properties may have been compromised. The approval on the part of the person ‘Responsible
for maintenance’ is recorded.

5. EXPERIENCE REPORT

The description of the experience report on the application of the Agile MATEMA has been
organized taking into account the indications for experience report papers recommended by [59].
In this respect, the following subsection describes this experience report in terms of: the application
context, the description of organizations participating, the report and analysis of the use of the
methodology proposed by companies, along with an assessment of Agile MANTEMA, as given
in the views of companies and researchers.

5.1. Application context

Agile MANTEMA has been applied in two software firms from Uruguay (critical reference group)
by means of the execution of the corresponding problem-solving cycle from action-research.
Agile MANTEMA has been used as a reference model in two improvement cycles, carried out in the
context of the COMPETISOFT project, whose objective was to improve the software maintenance
process in these two companies. These improvement cycles were carried out over a period of
six months and in action-research terms they were supported by the Software Engineering Group
in the Engineering Faculty of the University of the Republic of Uruguay (advisers). The cycles
were directed using as their improvement guide the activities established by the improvement
process defined in PmCOMPETISOFT [60]. They also used the proposal of Agile MANTEMA
(as reference for best practice in software maintenance), aiming to direct the maintenance process
in each of the enterprises.

One of the activities established by PmCOMPETISOFT is the performance of Diagnosing the
Process in relation to the initial situation of the enterprise, contrasting the process that the firm
carries out against a reference model (in this case the maintenance process of Agile MANTEMA).
This diagnosis allowed relevant information to be obtained about the general state of the mainte-
nance process carried out by each of the firms. That information was analysed, thereby generating
the results of the diagnosis, aiming to discover the improvement opportunities in the maintenance
process (the improvement opportunities are best practices that the company is not undertaking in
its process). These good practices were incorporated into the firms’ maintenance process by means
of the activities of Formulating and Executing Improvement from PmCOMPETISOFT.

5.2. Characteristics of the firms

At this point, we will focus on an introduction to the characteristics of the firms involved in
the application of Agile MANTEMA. In an effort to respect the need for confidentiality of the
enterprises involved in the application of Agile MANTEMA, we call these firms EU1 and EU2.
Their main features are:

• EU1 has been in the market for 18 years and has 45 employees at present. It has a single
software product, which has been developed by the company itself. The product is highly
adaptable to the characteristics of different organizations and the firm has been very successful
in its commercialization, so at the moment there is a very broad business base established

867

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

for it. The adaptability of the product has made it possible to introduce it into different
organizational settings, with no need to modify the software product. Yet, many clients ask
for modifications or special additions to it. In EU1, the process used for the maintenance of
the single product of the firm was analysed.

• EU2 has had a position in the market place for 15 years and currently has 26 employees. It has
different software systems, some made-to-measure for a particular client. Other more generic
products were put into operation with a limited number of clients. In general, the firm’s
customers are large organizations and each installation of the products has a considerable
number of users. In EU2, there was an analysis of the maintenance process used in what the
company believed to be its best-organized and best-working project. It is a system that has
been developed for a large organization (employed by dozens of users) and the service quality
that the organization renders to thousands of customers depends on its operating properly.

5.3. Reporting and analysing the work performed in companies

In this subsection, we present a general description of the use of Agile MANTEMA by both compa-
nies, based on contrasting the companies’ maintenance process with the proposed maintenance
strategy.

As regards the types of Maintenance defined by Agile MANTEMA, both firms claim that
the advanced service level is offered, which includes: Urgent Corrective, Non-Urgent Corrective,
Perfective, Adaptive and Preventative. Furthermore, in both firms there was an initial analysis of
the existing roles assigned to maintenance tasks and their correspondence to the roles defined by
Agile MANTEMA.

• In EU1, the role of Functional Analyst exists. This person acts as a representative of the client
and takes on, in part, the role of ‘Product Owner’ defined in Agile MANTEMA, especially in
those aspects of the product that are applicable to the totality of customers and users. There
is, apart from this, a person who fulfils the roles of person ‘Responsible for maintenance’
and ‘Request Manager’. A ‘Maintenance team’ is also identified.

• On the other hand, in EU2 the ‘Product Owner’ is strictly on the client’s side. The role
of Functional Analyst also exists, who is at the same time ‘Request Manager’ and person
‘Responsible for maintenance’.

On the other hand, contrasting the activities established by Agile MANTEMA for software
maintenance with those carried out in the two firms, the improvement opportunities were found
and these are presented below. These improvement opportunities were incorporated into the main-
tenance processes of the firms by means of the improvement cycle that each company carried out.
This improvement cycle followed the activities described by PmCOMPETISOFT [60].

• Formal definition of the maintenance process in both organizations. This process was improved
by using practices described in Agile MANTEMA, since in both firms some of the activities
established by the proposed methodology were being carried out, but the maintenance process
was neither complete nor formally defined.

• Definition of a strategy for management of modification requests for EU1. In this firm,
before facing the maintenance improvement cycle, a development process improvement cycle
was undertaken. By means of this, the documentation of the system requirements and the
specification of the requirements applicable to each modification request were systematized.
The improvement of the maintenance process allowed us to define the way of up-dating the
requirements specifications which are applicable to modified software products, essentially by
means of the generation of new versions of the documents involved. At the moment, the issue
of handling the up-dating of the system requirement is being resolved, especially for the case
of those requirements which may have changed. This is because generating a new version for
each SprintM brings about a very heavy workload, which is difficult for the firm to take on.
One alternative which has been assessed is to keep the original version of the requirements
document and complement it with some ‘deltas’ which correspond to the requests dealt with.

868

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

• Development of a new system for the requests management in EU2, due to the fact that there
are various different channels of communication (telephone, e-mail, verbal communication)
in this firm. Moreover, there are no guarantees that all the requests will be dealt with. This
system was developed during the improvement cycle of the maintenance process and it is due
to go into production soon. It has two goals: (i) to become the only way of communication
related to modification requests, and (ii) the user can register and see the state of the requests
through a Web interface that is friendly and easy to use.

• Incorporation of a document for the traceability of the modifications carried out during a
maintenance intervention. The recording of the intervention is carried out in EU1 as the
treatment of a request progresses, using the system of request management. To improve
this, we saw the advisability of incorporating a document in which the changes carried out
effectively were registered, identifying the components involved. For the case of corrective
maintenance, this allows us to identify modules liable to be corrected. In the final register of
corrective maintenance the phase (requirements, design, construction, among others) in which
the error came is indicated. The goal is to guide the improvement of the development process
towards the phase which is the main source of the problems.

• Drawing up of a document for the specification of modifications and incorporation of the
activity Monitoring the SprintM by the ‘Maintenance team’ of the EU2 firm in an effort
to assess how well the maintenance sprint was carried out. In both companies, a follow-
up check did take place, but not in the form of ‘Regular Meetings’ based on Scrum, as
Agile MANTEMA proposes. In EU2, this practice was introduced so that the whole team
would be working together and in the same direction, making the most of their own abilities
to remove obstacles that its members found when carrying out their tasks.

• Incorporation by enterprise EU2 of the Review and Retrospective Meeting proposed by
Agile MANTEMA. Neither of the firms had been performing this activity.

5.4. Discussion

Both the firms who took part and used Agile MANTEMA expressed the views that this method-
ology: (i) was an important and practical aid in making them reflect on their maintenance process,
and (ii) was useful in tackling improvement in this process. The researchers observed that the
proposal put forward by Agile MANTEMA turns out to be suitable as a reference model for
the improvement of the maintenance process in small firms. In addition, the Scrum approach is
consistent with the way the maintenance staff of these enterprises see the maintenance process.
From these experiences in real settings, it can be highlighted that the use of Agile MANTEMA
was enriching, both for the improvement group in charge of the application and for the research
group which created the methodology.

We will now go on to highlight some aspects of the application of Agile MANTEMA in small
organizations, first in terms of the lessons learned from views of the companies and researchers,
and then in terms of the limitations of the results and conclusions.

5.4.1. Lessons learned. Some relevant lessons learned which can be taken from the two use
cases are:

• Among the issues that most concerned the person ‘Responsible for maintenance’ in EU1 was
to be able to establish and then manage the commitments taken on by the ‘Maintenance team’.
These consisted of dealing with the demands of their various clients and of letting them know
in advance if it was going to turn out to be impossible to fulfil the agreed timescale. The adviser
showed the person ‘Responsible for maintenance’ that this matter is related to the maintenance
project management. The adviser also pointed out that Agile MANTEMA proposes that this
topic should be tackled by: the agile management of the maintenance process, by means of
the Monitoring the SprintM activity and (ii) the interface with the auxiliary process MAN.3
Project management, defined for the advanced service level. The person ‘Responsible for
maintenance’ opted to bring in the activity of Monitoring the SprintM initially, but expressed

869

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

interest in incorporating the tasks associated with the project management interface in the
improvement effort that followed.

• On analysing the modification requests scenario in EU1, the person ‘Responsible for mainte-
nance’ detected that there were some requests still waiting to be dealt with from over three
years before. It was thus clearly advisable to introduce the consideration of new elements
related to requests analysis in Agile MANTEMA. Among other aspects, the work load needed
to be analysed, along with its evolution, the concentration of requests in certain components
(especially in the case of corrective maintenance), priorities, the validity of the requests sent
in a long time beforehand and the requests that may be inter-related. These aspects have to
do with the management of projects and/or products. With regard to project management,
the strategy outlined under the previous bullet point can be used. As far as the management
of the ‘Request Register’, which is a work product, is concerned, this issue can be dealt with
by integrating the management practices described by the process attributes 2.2 Work product
management. In other words, the maintenance process described by Agile MANTEMA must
be increased to capability level 2.

• Those ‘Responsible for maintenance’ in both firms believe that the general approach of
Scrum included in Agile MANTEMA allows us to combine conflicting objectives, given the
emphasis that it places on short-term planning according to the priorities of the Modification
Requests existing at any given moment of time. These would include goals such as the quest
for efficiency in execution and the desire to give sufficient attention to changes in the priorities
of these requests.

• Both the companies considered that the grouping of requests for short-term planning, as
presented in Plannable SprintM, offers benefits. These include: (i) allowing us to assess
the compatibility and consistency of the changes associated with a group of requests, and
(ii) permitting improvement in the efficiency of the execution, since it is possible to perform
one single instance of regression testing for the group of requests.

• On the basis of an analysis of the maintenance processes in both firms, it is clear that the
emergency repairs (requests of urgent corrective maintenance) should afterwards be directed
towards a Plannable SprintM. The goals are to guarantee that the interventions carried out
maintain the required level of quality, that they complete the tests that may not have been
carried out and that they ensure that the problem which prompted the urgent request is solved
in subsequent versions of the software.

• Software maintenance management involves different information which comes from various
sources. Consequently, being able to count on a System of Request Management which allows
us to handle and manage the documentation of the interventions is of great assistance when
putting changes into effect during the maintenance process.

Among the most relevant aspects to highlight in the work carried out in each of the companies,
we draw attention to the following:

• In EU1, when the maintenance process underwent a diagnosis with Agile MANTEMA, they
found that it was possible to recognize how a large part of the practices and activities
undertaken in the firm fitted in somewhere in Agile MANTEMA. Nevertheless, it was clear
that the maintenance process being followed by the company lacked various best practices that
the maintenance methodology suggested (in other words, these practices were not being carried
out by the firm). To improve the maintenance process, four inter-related aspects were worked
on: (i) defining roles and responsibilities, (ii) improving mechanisms for communication and
documentation, (iii) systematizing the documentation of the interventions and (iv) adjusting
the request management system.

• In EU2, when the maintenance process of the Project under analysis underwent diagnosis with
Agile MANTEMA, they discovered that they were already grouping requests in accordance
with a SprintM. It should also be noted that, as in the case of EU1, they detected that
their greatest improvement opportunities had to do with the handling and management of
maintenance requests and with subsequent intervention. That being so, the improvement
activities were directed towards strengthening those aspects. Thus, this firm, which did not

870

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

have a system for the management of requests, opted to create one, so that clients and users
could register their requests and also consult to see what stage these were at. The idea was to
have a channel for all communication with the ‘Maintenance team’. Apart from that aspect,
they also brought in agile follow-up practices to the maintenance process activities.

Furthermore, alongside the learning and reflection on the part of the enterprises, the researcher
group in charge of the creation of the maintenance methodology also obtained an initial assessment
of its use in a real environment. With the feedback given by the employees of the firms who used the
maintenance methodology, valuable information for carrying out some subsequent improvements
in it was also gathered. Such improvements have focused on refining Agile MANTEMA, with the
following suggestions:

• Provide support tasks to the communication between the ‘Maintenance team’ and the user,
since this is a decisive aspect of the maintenance process.

• Incorporate in a SprintM the whole set of tasks for the verification and validation of the
consistency of the set of ‘Modification Requests’ involved.

• Substitute the task ‘Execute the software simultaneously’ in a Plannable SprintMwith ‘Regres-
sion Testing’, which is more general and more suitable.

• Indicate explicitly that an urgent request which starts off a Non-Plannable SprintM can
receive unitary attention, that is to say it does not have to be grouped with any other
request.

• Include in the register of the activity ‘Complete Intervention’ of the corrective maintenance,
an indication of the specific phase (analysis, design, construction, test) in which the error
occurred.

• Take the task ‘Pass to production’ out of the activity ‘Complete Intervention’, since it is
common to find that the release and deployment by the client of a modified software product
is an independent activity, separate from the completion of the intervention.

• Create predefined templates which are applicable to the different activities established by the
methodology, to make it easier to put Agile MANTEMA into operation.

At the moment, the lessons learned and the suggestions for improvement in the methodology
are being analysed, the goal being to integrate them into a new version of Agile MANTEMA,
through the carrying out of a new research cycle of action-research.

From the experience reports shared by the companies, we have obtained relevant information
about the application of Agile MANTEMA in the industrial setting. Based on this information,
we consider that this maintenance methodology can be useful and practical for supporting the
work related to software maintenance in small organizations. We say this because both compa-
nies have reported positive experiences and lessons on the usefulness of such methodology in
improving their maintenance process. Among other aspects, these experiences are related to a
better knowledge of its software maintenance process, the incorporation and implementation of
new best practices (technical and management) in this process and the establishing of the type
of maintenance that they offer. In short, the work carried out and reported by these compa-
nies indicates that they have reflected on the way they perform their maintenance process and
that they have improved their software maintenance process by using the strategy proposed by
Agile MANTEMA.

5.4.2. Limitations The participative variant of Action-research was the research strategy used to
carry out the application of Agile MANTEMA in the two companies that are part of the crit-
ical reference group, and they had the support of an adviser. This person participated in the
diagnosis of the maintenance process of each company and gave recommendations to them as
to how to improve their respective processes. These companies put in place the recommenda-
tions made by the adviser and they informed him of the results and effects through experience
reports. It is important to highlight that the adviser did not participate in the incorporation of
the improvement opportunities of the maintenance process (that is to say, in the organizational
change). This person therefore had a limited control of the work performed on this topic within the

871

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

companies. This aspect entailed an application of Agile MATEMA which was not very systematic
or controlled, from the point of view of the researchers. That limits the results and conclusions
obtained.

Furthermore, the study carried out on the application of Agile MANTEMA also presents other
limitations: (i) the observations and conclusions presented are based on two experience reports
from two companies, which can limit the power of generalization, and (ii) there may be a bias
in the experience reports, due to some particular kind of handling of events and information by
companies and the adviser, since there is only one evidence source for the application, which is
the experience report shared by the company.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented Agile MANTEMA, which puts forward a software maintenance
methodology that focuses on small organizations. This methodology has been developed in the
context of the COMPETISOFT project, where the enterprises and some researchers participating in
the project highlighted the need for a strategy that would specifically address the activities related
to software maintenance, separating these from the ones done for software development. In this
respect, Agile MANTEMA sets out the elements needed to guide the software maintenance in
small organizations step-by-step. Furthermore, this paper has also described the experience report
of two small firms who carried out an improvement cycle which focused on the maintenance
process, doing so by following the maintenance strategy described by this methodology. From
this initial employment of Agile MANTEMA in these two small companies, it was seen that the
maintenance methodology proposed can be useful and suitable for this type of company, since
both firms have formally defined their maintenance process based on Agile MANTEMA, thus
attempting to improve their daily routine as regards software maintenance.

For the construction of the components of Agile MANTEMA, process/method researchers
have carried out several research cycles (of different types). The first research cycles were of a
conceptual type, to get to know the MANTEMA methodology, along with the Scrum method. The
idea was to see how to use them in an integrated way to construct Agile MANTEMA. Then various
methodological research cycles were executed, to develop the different components of the proposed
methodology (maintenance process, services levels, performance levels and capability levels).
Afterwards, by means of the execution of a new technical research cycle, an electronic process
guide was also constructed (by modelling Agile-MANTEMA with SPEM and then publishing it
with the EPF composer). Finally, the released version of Agile MANTEMA was applied in two
companies (of the critical reference group of COMPETISOFT) through a problem-solving cycle,
and the feedback of this application was carried out with experience reports from companies. The
application did not follow a method that would guarantee a controlled environment by researchers.
A real work was used instead, consisting of the collaboration of company professionals to assess the
proposed methodology in a practical way. Although experience reports are not the most suitable way
of validating a research proposal, this method allows us to obtain results regarding the application
of software technologies, as well as their effectiveness in industrial settings [61]. This is useful for
researchers in identifying issues related to the research. It is also an asset for organizations if we
find out about the use of these technologies in a real context. In this respect, the experience report
described in this paper has been useful as an initial empirical validation of Agile MANTEMA.
On the basis of what it tells us, we believe that it is advisable and even necessary to use a more
comprehensive empirical method (for instance case study) to validate this methodology in future
applications of it. This new method should allow us to strengthen and increase the rigour of the
application of the methodology proposed and to address the limitations described by means of a
validation plan. The objective would be to increase the reliability of the results obtained and the
conclusions drawn.

In the future work, the suggestions for improvement registered in the experience reports will
be incorporated into a new version of Agile MANTEMA. Furthermore, we have come to the

872

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

conclusion that we have to strengthen our maintenance approach. To do so, we will take into account
different elements from the corrective maintenance maturity model (CM3). This methodology
will, moreover, be applied in other small enterprises which may be interested in its use when
employing an empirical research method as a case study. The objective is that from a representative
set of case studies new feedback may be obtained, so that we may go on to carry out further
assessment, fine-tuning, improvement and validation of the maintenance methodology we have
proposed.

ACKNOWLEDGEMENTS

We acknowledge the assistance of the following projects: ARMONIAS (PII2109-0223-7948, JCCM
of Spain), PEGASO-MAGO (TIN2009-13718-C02-01, FEDER and MEC of Spain) and INGENIOSO
(PEII11-0025-9533, JCCM of Spain). Acknowledgements by Francisco J. Pino to the University of Cauca
where he works as Associate Professor.

REFERENCES

1. Pigoski T. Practical software maintenance. Best Practices for Managing your Investment. Wiley: New York, 1997.
2. Canfora G, Cimitile A. Software maintenance. In Handbook of Software Engineering and Knowledge Engineering,

vol. 1. Fundamentals. Chang SK (ed.). World Scientific Publishing Co. Pte. Ltd.: Singapore, 2001; 91–120.
3. Kajko-Mattsson M. Corrective maintenance maturity model: Problem management (PhD Synopsis). The 18th

International Conference on Software Maintenance (ICSM 2002). IEEE Computer Society: Silver Spring MD,
2002; 486–490.

4. Huang SJ, Lai R. Measuring the maintainability of a communication protocol based on its formal specification.
IEEE Transactions on Software Engineering 2003; 29(4):327–344.

5. O’Keeffe M, Ó Cinnéide M. Search-based refactoring for software maintenance. Journal of Systems and Software
2008; 81(4):502–516.

6. Singer J. Practices of software maintenance. Proceedings International Conference on Software Maintenance.
IEEE Computer Society Press: Los Alamitos CA, 1998; 139–245.

7. Krogstie J, Jahr A, Sjøberg DIK. A longitudinal study of development and maintenance in Norway: Report from
the 2003 investigation. Information and Software Technology 2006; 48(11):993–1005.

8. MBI. Panorama de la Industria del Software en Latinoamérica, 2004. Available at: http://www.mbi.com.br/MBI/
biblioteca/relatorios/200409panswlatam/200409 panorama industria software america latina.pdf [April 2011].

9. April A, Huffman J, Abran A, Dumke R. Software maintenance maturity model (SMmm): The software
maintenance process model. Journal of Software Maintenance and Evolution: Research and Practice 2005;
17(3):197–223.

10. Van Bon J. World Class IT Service Management Guide 2000. ten Hagem & Stam Publishers: The Hague,
Netherlands, 2000.

11. Batista J, Figueiredo A. SPI in a very small team: A case with CMM. Software Process: Improvement and
Practice 2000; 5(4):243–250.

12. Polo M, Piattini M, Ruiz F. Using a qualitative research method for building a software maintenance methodology.
Software Practice and Experience 2002; 32(13):1239–1260.

13. Zitouni M, Abran A, Bourque P. Élaboration d’un outil d’évaluation et d’amélioration du processus de la
maintenance des logiciels: Une piste de recherche. Proceedings Génie Logiciel et ses Applications, Huitiémes
Journées Internationales, 1995; 727–739.

14. Polo M, Piattini M, Ruiz F, Calero C. MANTEMA: A software maintenance methodology based on the ISO/IEC
12207 Standard. Proceedings of the Fourth IEEE International Symposium and Forum on Software Engineering
Standards, 1999; 76–81.

15. Polo M, Piattini M, Ruiz F. Improving the quality of the maintenance process. Second World Congress for
Software Quality (WCSQ 2000), 2000, 325–330.

16. Oktaba H, Garcia F, Piattini M, Pino F, Alquicira C, Ruiz F. Software process improvement: The COMPETISOFT
project. IEEE Computer 2007; 40(10):21–28.

17. Pino F, Pardo C, Garcı́a F, Piattini M. Assessment methodology for software process improvement in small
organizations. Information and Software Technology 2010; 52(10):1044–1061.

18. Schwaber K. The Scrum development process. OOPSLA ’95 Workshop on Business Object Design and
Implementation. ACM Press: Austin TX, U.S.A., 1995; 1–23.

19. ISO. ISO/IEC 12207: Information technology—Software life cycle processes, 2002. Available at: www.iso.org
[April 2011].

20. Coleman G, O’Connor R. Investigating software process in practice: A grounded theory perspective. Journal of
Systems and Software 2008; 81(5):772–784.

21. Hurtado J, Bastarrica C. Implementing CMMI using a combination of agile methods. CLEI Electronic Journal
2006; 9:1–15.

873

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

22. Abrahamsson P, Salo O, Rankainen J, Warsta J. Agile Software Development Methods: Review and Analysis.
VTT Publications: Finland, 2002; 478.

23. Ambler S. Agile Modeling: Effective Practices for Extreme Programming and the Unified Process. Wiley:
New York, 2002.

24. Beck K. Embracing change with extreme programming. IEEE Computer 1999; 32:70–77.
25. Hunt A, Thomas D. The Pragmatic Programmer. Addison-Wesley: Reading MA, 2000.
26. Schwaber K. Scrum Guide, 2010. Available at: http://www.scrum.org/storage/scrumguides/Scrum%20Guide.pdf

[April 2011].
27. Beck K. Principles behind the Agile Manifesto, 2003. Available at: http://agilemanifesto.org/principles.html [April

2011].
28. Poole C, Huisman J. Using extreme programming in a maintenance environment. IEEE Software 2001;

18(6):42–50.
29. Svensson H, Höst M. Introducing an agile process in a software maintenance and evolution organization. The

Ninth European Conference on Software Maintenance and Reengineering (CSMR’05). IEEE Computer Society:
Silver Spring MD, 2005; 256–264.

30. Kajko-Mattsson M, Forssander S, Olsson U. Corrective maintenance maturity model (CM3): Maintainer’s education
and training. The 23rd International Conference on Software Engineering (ICSE 2001). IEEE Computer Society:
Toronto, Canada, 2001; 610–619.

31. Kajko-Mattsson M. Problem management maturity within corrective maintenance. Journal of Software
Maintenance and Evolution: Research and Practice 2002; 14(3):197–227.

32. Kajko-Mattsson M. CM3: Problem management: Taxonomy of activities. IASTED International Multi-conference
on Applied Informatics Innsbruck, 2003; 1161–1166.

33. Kajko-Mattsson M, Ahnlund C, Lundberg E. CM3: Service level agreement. The 20th International Conference
on Software Maintenance (ICSM 2004). IEEE Computer Society: Chicago, U.S.A., 2004; 432–436.

34. Kajko-Mattsson M, Winther P, Vang B, Petersen A. An outline of CM3: Emergency problem management. The
31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA 2005).
IEEE Computer Society: Porto, Portugal, 2005; 292–303.

35. Kajko-Mattsson M. Evaluation of CM3: Front-end problem management within industry. The 10th European
Conference on Software Maintenance and Reengineering (CSMR 2006). IEEE Computer Society: Silver Spring
MD, 2006; 367–368.

36. Calvo-Manzano JA, Cuevas G, San Feliu T, De Amescua A, Pérez M. Experiences in the application of software
process improvement in SMES. Software Quality Journal 2002; 10(3):261–273.

37. Scott L, Jeffery R, Carvalho L, D’Ambra J, Rutherford P. Practical software process improvement—The IMPACT
project. Proceedings of the Australian Software Engineering Conference, 2001; 182–189.

38. Wangenheim CGV, Weber S, Rossa Hauck JC, Trentin G. Experiences on establishing software processes in
small companies. Information and Software Technology 2006; 48(9):890–900.

39. Oktaba H. MoProSoft�: A Software Process Model for Small Enterprises. Proceedings of the First International
Research Workshop for Process Improvement in Small Settings, Pittsburgh, Carnegie Mellon University, 2006;
93–101.

40. Weber K, Araújo E, Rocha A, Machado C, Scalet D, Salviano C. Brazilian software process reference model
and assessment method. Computer and Information Sciences (Lecture Notes in Computer Science, vol. 3733).
Springer: Berlin/Heidelberg, 2005; 402–411.

41. McCaffery F, Richardson I, Coleman G. Adept—A software process appraisal method for small to medium-sized
Irish software development organisations. European Systems & Software Process Improvement and Innovation
(EuroSPI 2006), 2006; 7.12–7.21.

42. Cater-Steel AP, Toleman M, Rout T. Process improvement for small firms: An evaluation of the RAPID
assessment-based method. Information and Software Technology 2006; 48(5):323–334.

43. Horvat RV, Rozman I, Györkös J. Managing the complexity of SPI in small companies. Software Process:
Improvement and Practice 2000; 5(1):45–54.

44. McKay J, Marshall P. The dual imperatives of action research. Information Technology and People (Special Issue
on Action Research in Information Systems) 2001; 14(1):46–59.

45. Chiasson M, Germonprez M, Mathiassen L. Pluralist action research: A review of the information systems
literature. Information Systems Journal 2009; 19(1):31–54.

46. Avison D, Lan F, Myers M, Nielsen A. Action research. Communications of the ACM 1999; 42(1):94–97.
47. Wadsworth Y. What is participatory action research? Action Research International (Paper 2), 1998.
48. French WL, Bell CH. Organization Development: Behavioral Science Interventions for Organization Improvement.

Prentice-Hall: London, 1999.
49. ISO. ISO/IEC 12207:Systems and software engineering—Software life cycle processes, 2006. Available at:

www.iso.org [April 2011].
50. MAP. Métrica Versión 3. Metodologı́a de Planificación, Desarrollo y Mantenimiento de sistemas de información,

2007. Available at: http://www.csi.map.es/csi/metrica3/index.html [April 2011].
51. ISO. Information technology—Process assessment—Part 5: An exemplar process assessment model. ISO/IEC

15504-5:2006(E), 2006. Available at: www.iso.org [April 2011].
52. ISO. Information technology—Process assessment—Part 2: Performing an assessment. ISO/IEC 15504-2:2003/

Cor.1:2004(E), 2004. Available at: www.iso.org [April 2011].

874

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

SOFTWARE MAINTENANCE METHODOLOGY FOR SMALL ORGANIZATIONS

53. Ruiz F, Piattini M, Polo M, Calero C. Maintenance types in the MANTEMA Methodology. International
Conference on Enterprise Information System, 1999; 27–30.

54. Pino F, Garcia F, Piattini M. Key processes to start software process improvement in small companies. The 24th
Annual ACM Symposium on Applied Computing (SAC’09), 2009; 509–516.

55. Pino F, Garcia F, Piattini M. Software process improvement in small and medium software enterprises: A systematic
review. Software Quality Journal 2008; 16(2):237–261.

56. Pino F, Ruiz F, Salas S. Agil Mantema Versión 1.0. COMPETISOFT IT.21 (In Spanish). Available at:
http://alarcos.inf-cr.uclm.es/competisoft/ [April 2011].

57. OMG. Software & Systems Process Engineering Metamodel specification (SPEM) Version 2.0, 2008. Available
at: http://www.omg.org/spec/SPEM/2.0/ [April 2011].

58. Eclipse. Eclipse Process Framework Project (EPF), 2007. Available at: http://www.eclipse.org/epf/ [April 2011].
59. Montesi M, Lago P. Software engineering article types: An analysis of the literature. Journal of Systems and

Software 2008; 81(10):1694–1714.
60. Pino F, Hurtado J, Vidal J, Garcı́a F, Piattini M. A process for driving process improvement in VSEs. International

Conference on Software Process (ICSP 2009) (Lecture Notes in Computer Science, vol. 5543). Springer: Berlin.
2009; 342–353.

61. Briand L, Selby R. Empirical software engineering: Industrial experience reports. Empirical Software Engineering
2006; 11(4):613.

AUTHORS’ BIOGRAPHIES

Francisco J. Pino has a European PhD in Computer Science from the University of
Castilla-La Mancha (UCLM), Spain. He is currently an associate professor at the Elec-
tronic and Telecommunications Engineering Faculty at the University of Cauca, in
Popayán (Colombia). He is a member of the IDIS Research Group and his research
interest is Software process improvement in small companies, Harmonization of multiple
improvement technologies and Qualitative research methods for Software Engineering.

Francisco Ruiz is a PhD in Computer Science from the University of Castilla-La Mancha
(UCLM) and an MSc in Chemistry–Physics from the University Complutense of Madrid.
He is associate professor of the Department of Information Technologies and Systems
at UCLM in Ciudad Real (Spain). He has been Dean of the Computer Science Faculty
between 1993 and 2000. Previously, he was Director of the Computer Services in
the mentioned university (1985–1989) and has also worked in private companies as
analyst-programmer and project manager. His current research interests include: business
processes modeling and measurement, software process technology and modeling, soft-
ware maintenance, and methodologies for planning and managing software projects. In
the past, other work topics have been: GIS (geographical information systems), educa-
tional software systems, and deductive databases. He has written 8 books and 18 chapters
on the mentioned topics and published 26 papers in refereed international journals and

more than one hundred papers in other journals, congresses, conferences and workshops. He has been a member
of 30 program committees, reviewer in 4 scientific events, and member of 7 organizing committees. He belongs
to several scientific and professional associations (ACM, IEEE-CS, ISO JTC1/SC7, EASST).

Félix Garcı́a received his MS (2001) and PhD (2004) degrees in Computer Science from
the University of Castilla-La Mancha (UCLM). He is currently an associate professor
in the Department of Information Technologies and Systems at the UCLM. He is a
member of the Alarcos Research Group and his research interests include business process
management, software processes, software measurement and agile methods.

875

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

F. J. PINO ET AL.

Mario Piattini has an MSc and PhD in Computer Science from the Technical University
of Madrid and is a Certified Information System Auditor and Certified Information
Security Manager by ISACA (Information System Audit and Control Association). He
is a professor in the Department of Computer Science at the University of Castilla-
La Mancha, in Ciudad Real, Spain. Author of several books and papers on software
engineering, databases and information systems, he leads the ALARCOS research group of
the Department of Information Systems and Technologies at the University of Castilla-La
Mancha, in Ciudad Real, Spain. His research interests are: software process improvement,
database quality, software metrics, software maintenance and security in information
systems.

876

Copyright © 2011 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2012; 24:851–
DOI: 10.1002/smr

876

